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Abstract

Bikesharing  systems  have  been  growing  quickly  of  late.  They
consist of stations distributed throughout a city where one can check out a
bike  for  short  trips.  Some  stations  are  more  popular  than  others.  This
project develops statistical models to predict station popularity based on the
accessibility of stations to jobs and housing. Linear regression and random
forest regression are employed. The models are then transferred to other
systems  to  evaluate  their  efficacy  as  planning  tools  for  new  systems.
Models do not predict as well as might have been hoped, nor is there any
one model that performs uniformly well in all cities. Spatial autocorrelation
is  present  both  in  the  popularities  and  the  residuals  from  most  of  the
models, indicating that spatial effects (such as accessibility) have not been
fully explained.

Bikesharing systems have become popular of late, being installed in many cities. They consist

of electronic stations distributed at  regular intervals throughout a city. Members of the system can

check out bikes at any station and return them to any other station. Some stations are, of course, more

popular than others. One would expect stations with the highest accessibility to jobs and residents to be

the most popular. This article explores whether measures of accessibility can be used to explain and

predict bikeshare popularity and explain the autocorrelation seen in popularities. A model of bikeshare

popularity  is  first  developed  in  Washington,  DC  (Capital  Bikeshare),  and  then  transferred  to

Minneapolis  (Nice  Ride Minnesota)  and the  San Francisco Bay Area  (Bay Area  Bikeshare).1 This

1 Throughout this article, San Francisco will refer to the entire Bay Area Bikeshare system, not only the stations located
in the City of San Francisco. Minneapolis will refer to entire Nice Ride Minnesota system, and Washington, DC will
refer to the entire Capital Bikeshare system.
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article does find a significant connection between accessibility and station popularity, but falls short of

finding a reliable general model for predicting bikeshare popularity in disparate cities.

Literature Review

Rixey  (2013) has  done  a  thorough  analysis  of  the  popularity  of  bikeshare  stations,  using

multiple linear regression to explain station popularity based on a multitude of factors. His work did

not focus exclusively on accessibility, although his use of buffers around stations to calculate variables

such as the number of people and jobs nearby constitute accessibility measures (albeit not based on

network distance). This article takes a slightly different approach to modeling bikesharing: instead of

modeling all cities simultaneously, this paper builds models in one city and attempts to transfer them to

other  cities,  to  evaluate  their  efficacy  as  planning  tools.  This  article  also  focuses  on  spatial

autocorrelation as an indicator of model specification. Nevertheless, Rixey’s article provides a valuable

starting point for the discussion that follows.

Data Sources

Seven variables were calculated to use as input to the model: the number of jobs within 60 and

30 minutes by transit of each station (shortened to jobs60 and jobs30 in code and some figures), the

resident population within 60 and 30 minutes by transit (population60 and population30), the resident

population  and number of  jobs  within  10 minutes  by walking (population10 and jobs10),  and the

number of bikeshare stations within 30 minutes by cycling (bike30). Bikeshare is often combined with

transit  in  multimodal  trips  (Capital  Bikeshare 2013,  29),  so it  makes  sense to  use an accessibility

measure that incorporates transit. The cumulative measure of bikeshare accessibility is calculated for

30-minute bike trips because all  of the considered systems charge users an additional fee for trips

longer than 30 minutes  (Capital Bikeshare 2014; Bay Area Bike Share 2013; Nice Ride Minnesota
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2014). Accessibility by transit  was calculated at 8am on a weekday. It would be interesting to use

accessibility  measures  at  different  times  of  day  to  evaluate  the  effect  of  off-peak accessibility  on

bikeshare use.

Data for the project come from many different sources. Population data is taken from the 2010

US Census TIGER/Line combined demographic and geography files, using the total population within

each  census  block.  Block-level  employment  data  is  taken  from  the  US  Census  Longitudinal

Employer-Household Dynamics Origin-Destination Employment Statistics (LODES).

Station popularity data come from the bikeshare system operators themselves. In Washington,

DC and Minneapolis/St. Paul, the system operators provide data files with information about each trip,

including the origin and destination. To calculate station popularity, I summed the number of trips that

originated or terminated at a particular station and divided by the number of days that station has been

or was operational.

In San Francisco, unfortunately, such fine-grained trip-level data was not available to the public

at the time the analysis was conducted.2 However, there is a real-time station information feed. By

fetching this feed frequently for a long period of time, one can infer station popularity by seeing how

many bikes have been taken from or deposited at a station. For this project, data from the real-time feed

was fetched every minute, from  August 29, 2013 until January 28, 2014, a period of five months. A

script  then  tabulated  the  data,  calculating  popularities  based  on  how  many  bike  movements  had

occurred. There are a few problems with this method. If bikes both arrived and departed during a given

minute,  the net  movement rather than the total  movement was counted.  Thus,  popularity could be

understated  (especially  for  popular  stations,  where  multiple  bike  movements  per  minute  are  more

likely). This method also does not account for rebalancing; system operators use vans to move bikes

2 This data has since been released.
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from crowded stations to less crowded ones. The trip-level data excludes rebalancing trips from station

popularity measurements, but the approach taken in San Francisco counts rebalancing movements as

part of the popularity. Bias from this will be most pronounced at stations where bike movements are

very unbalanced (perhaps at particular times of day). This method has been used by researchers in the

past, although they corrected for rebalancing movements (Dempsey et al., l. 81–156).

Accessibility indicators were computed using the open-source OpenTripPlanner multimodal trip

planning framework  (OpenTripPlanner  Team 2014).  This  is  still  beta  software,  so some bugs may

remain,3 but results are believed to be sufficiently correct for this analysis. Street network data from

OpenStreetMap was used to calculate walking distances. Transit schedule data was received in General

Transit Feed Specification format from various transit agencies in each analysis area (see Table 1) and

was used to calculate transit accessibility. OpenTripPlanner output data in CSV files, which were easily

loaded into R (R Core Team 2013) for data analysis.

Region Agencies

Washington, DC Washington Metropolitan Area Transportation Authority
Fairfax Connector
Virginia Railway Express
Maryland Transit Administration/MARC
Arlington Transit

San Francisco AC Transit
Caltrain
Bay Area Rapid Transit (BART)
SamTrans
San Francisco Muni
Valley Transportation Authority (VTA)

Minneapolis/St. Paul Metro Transit

Table 1: Transit agencies used for analysis of accessibility by transit

Modeling Methodology

The goal of the project is to develop a model in Washington, DC, that not only predicts the

3 https://groups.google.com/d/msg/opentripplanner-users/bWi2XyegAvA/333Q3_q-tv0J

https://groups.google.com/d/msg/opentripplanner-users/bWi2XyegAvA/333Q3_q-tv0J
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popularities of stations in Washington, but also can be transferred to other cities. With that in mind, the

model was trained only on data from Washington, in order to get a better picture of how well it would

transfer to a new city. Another goal was to try to explain the autocorrelation in the data; nearby stations

tend to have similar popularities  (Conway 2013, 5). Autocorrelation, it is hypothesized, results from

wanting  to  be  near  some  urban  amenity.  Ergo,  accessibility  should  be  able  to  encapsulate  the

autocorrelation, leaving us with residuals that are not spatially autocorrelated.

Initially,  linear  regression  was  used  to  fit  a  model  to  the  Washington  dataset.  Best-subset

selection was used to determine what the best combination of variables was, and cross-validation was

Figure 1: Cross-validation MSE for linear model with different numbers of predictors and one 
standard deviation lines
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used to pick a number of variables that created an accurate yet parsimonious model. Generally, when

using cross-validation to choose a number of predictors, the most parsimonious model with MSE less

than one standard error more than the minimum is chosen  (Hastie, Tibshirani, and Friedman 2009,

244). In this case, the model with only one variable is chosen (see Figure  1). The constructed linear

model  is  predicting  the natural  log  of  station  popularity, rather  than  the raw popularity, to  reduce

heteroskedasticity. When the model is fit with the raw popularity, there is a noticeable funnel shape in

the residuals, with larger residuals for more popular stations. This makes sense. A 10% error at a station

with 10 bike movements per day is only 1 bike movement, while that same error at a station with 100

bike movements  per  day is  10 bike movements.  Taking a  log of the response solves  the problem

(Figure 2).4 Rixey (2013, 4) also used the natural log of popularity in his analysis.

4 In a previous project, I used a Box-Cox transformation to normalize the station popularities (Conway 2013, 5). A log
was used instead here because Box-Cox requires fitting a parameter, making the method more flexible. Since this model
is intended for transfer, excess flexibility is not desirable.
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Coefficients Mean Squared
Error

R2 Moran’s I

Model Intercept Predictor ☂ Cross-
validation

‡☀

Test Training Test
☁

Response Residuals

Linear model (DC) 1.64 0.06 0.63 – 0.68 – 0.79 0.50

Direct transfer (MN) 1.64 0.06 – 0.61 – 0.31 0.69 0.55

Direct transfer (SF) 1.64 0.06 – 0.87 – -0.15 0.49 0.53

Refit linear model (MN) 1.40 0.07 0.62 – 0.32 – 0.69 0.53

Refit linear model (SF) 2.65 0.03 0.54 – 0.33 – 0.49 0.23

Random forest model (DC) 
‡

– – 0.31 – 0.84 – 0.79 -0.02†

Direct transfer random 
forest (MN) ‡

– – – 0.99 – -0.12 0.69 0.63

Direct transfer random 
forest (SF) ‡

– – – 0.61 – 0.19 0.49 0.27

Double-log-scaled random 
forest (MN) ‡

1.39 0.44 0.75 – 0.17 – 0.69 0.63

Double-log-scaled random 
forest (SF) ‡

1.23 0.68 0.52 – 0.34 – 0.49 0.20

Refit random forest (MN) ‡ – – 0.47 – 0.47 – 0.69 0.30

Refit random forest (SF) ‡ – – 0.50 – 0.31 – 0.49 0.06†

† not statistically significant (α = 0.05)
 5-fold☀

‡ These models and measures are stochastic; parameters and values may vary slightly if refit, even with the same data.
 Using test ☁ R2  to evaluate the validity of transferred models is misleading, as it is based on the mean of the test

observations. Thus it “sees” the test data, which the model did not see when trained.
 The predictor is jobs within 60 minutes by transit for the linear models and the random forest prediction in log units for☂

the double-log-scaled models.

Table 2: Summary of all models fit for evaluating bikeshare use
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Initially, a semilog linear model was fit regressing log(Popularity) onto jobs within 60 minutes

by walking and transit,  as suggested by best subset selection. The model does a fairly good job at

explaining the variation in the station popularities in Washington, DC, with cross-validation MSE of

0.63 (in log-transformed units) and a training R2 of 0.68. It does show a significant connection between

accessibility and station popularity. The intercept is 1.64 and the coefficient 0.06 (all of the accessibility

measures are expressed in units of 10,000 except for bikeshare stations within 30 minutes, so jobs

within 60 minutes is actually tens of thousands of jobs within 60 minutes). Both the intercept and the

coefficient are significant.5

5 Though it may initially seem that this is not sampling and thus these types of things do not apply, it is important to

Figure 2: Log-transforming the response. Note the funnel shape in the left-hand plot, indicating 
heteroskedasticity, and the more uniform shape of the right-hand plot.
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Unfortunately, the  residuals  are  still  strongly  autocorrelated,  with  Moran’s  I equal  to  0.50.

Moran’s I is 0.79 for log(Popularity), so it has been reduced but not as much as one would hope.  I

values  greater  than  0.3  suggest  strong  spatial  autocorrelation  (O’Sullivan  and  Unwin  2010,  206).

Parameters and statistics for all fitted models are shown in Table 2.

This model is not completely satisfactory for a number of reasons. For one, the autocorrelation

of the residuals is problematic. It also would make intuitive sense for popularity to depend on the other

accessibility  measures.  One  reason  potentially  important  variables  may  be  excluded  from  by

best-subset selection is that all of the predictors are highly correlated (Figure 3). Random forests are an

alternate regression method that can be useful for data with a number of highly correlated predictors

(James et al. 2013, 320).

remember that, while data from all of the stations was used, this model is intended for prediction, and thus the true
population is all the stations that could ever exist; the stations that currently exist are a sample from this (and not
necessarily a random sample).
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Random forests are built by fitting hundreds of decision trees; however, at each split of each

tree, a random sample of the predictors are drawn and used to make the split. The results of all of the

fitted trees are then averaged to reach a final prediction. This means that the model works particularly

well when variables are highly correlated; since most variables are excluded from any one particular

split,  the  effects  of  slightly  weaker  predictors  are  not  drowned  out  by  the  effects  of  very  strong

predictors (James et al. 2013, 320). 

Figure 3: Correlations between predictors and response, Washington, DC. 
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Fitting a random forest requires determining how many variables should be used at each split.

This can be considered a tuning parameter  (Hastie, Tibshirani, and Friedman 2009, 592), so we fit it

using cross-validation (5-fold, in this case). From the graph of the values of cross-validation MSE with

different numbers of variables, we see that they are all roughly equivalent (Figure 4). The creators of

the random forest method suggest selecting the number of predictors divided by 3 (Hastie, Tibshirani,

and Friedman 2009,  592);  as there is  no evidence to  suggest this  is  not  a good choice,  we use 2

variables at each split. We continue to use log(Popularity) as the response variable. Though random

forests can handle nonlinearity, there is still the problem of heteroskedasticity; it’s simply possible to be

more wrong (in absolute terms) when popularities are high. The random forest has cross-validation

Figure 4: Cross-validation MSE for random forest explaining log(Popularity) based on accessibility 
measures, with one standard deviation lines
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MSE of 0.31 (considerably lower than that of the linear model) and training R2   of 0.84. All variables

contributed to the model, although jobs within 60 minutes by transit contributed the most (Figure 5).

This  is  consistent  with  the  results  of  best-subset  selection  on  the  linear  model.  The  spatial

autocorrelation in the residuals has also disappeared. This model is much more satisfactory than the

linear model, presumably because it is able to capture more of the structure in the accessibility data.

Transferring the Models

The models do a fair job of predicting the popularity of

bike-sharing  stations  in  Washington,  DC.  However,  the  model

would be far more useful as a planning tool if it worked in other

cities as well. Bikeshare station data is available for Minneapolis’s

Nice  Ride  system  and  the  San  Francisco  Bay  Area’s

newly-launched Bay Area Bike Share system. These data allow us

to test transferring the model.

Figure 5: A plot of the relative 
importance of different variables to 
the random forest fit. Longer bars 
indicate that variables contributed 
more to the final random forest.
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First, the models developed in Washington, DC were directly transferred to the other cities (that

is,  both  the  form of  the  models  and the  fitted  parameters  and coefficients  were  transferred).  The

performance of the linear model in Minneapolis is comparable to its performance in Washington, DC;

both have MSE of approximately 0.6.6 The R2  in Minneapolis is much lower than the R2 in Washington;

there are two reasons for this discrepancy. One is that the R2  in Washington is a training R2 , while the

R2  in Minneapolis is a test R2; training R2  tends to be larger because the model is specifically fitted to

reproduce that  data  (although this  effect  should be controlled by using cross-validation; the model

should not be overfit). The other issue comes from the definition of R2: it is the ratio of the explained

6 It should be noted that this is 5-fold cross-validation MSE in Washington, DC and test MSE in Minneapolis and San
Francisco; the 5-fold cross-validation is subject to bias and may thus be slightly overestimated.

Figure 6: Boxplots of the log-transformed popularities of stations in each of the project areas
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variation to  the total  variation.  There is  less variation in the popularity of stations in  Minneapolis

(Figure 6), so the R2 will be lower even when the MSE is similar. It is also a bit misleading to use test

R2 to evaluate the effectiveness of a transferred model, as it is not directly comparable to the training R2

used to evaluate the other models. In San Francisco, test MSE is higher than it is in either Washington

or  Minneapolis;  test  R2 is  actually  negative,  indicating that  the  model  predicts  worse than  simply

predicting the mean popularity for all the stations. That is, there is more variation in the residuals than

there was in the original data.

It  is perhaps overly optimistic to expect the fitted parameters as well as the model form to

transfer easily from one city to another city in a different context. Instead, we can take the model forms

fit in DC and refit them using data from another city. For the linear models, we refit a linear regression

of log(Popularity) onto jobs within 60 minutes by walking and transit. In Minneapolis, this results in no

noticeable change in MSE over the directly transferred model (the coefficients are also very similar). In

San Francisco,  however,  this  reduces  MSE by approximately  0.3.7 The  intercept  is  larger  and the

coefficient on jobs smaller. This is because there are fewer low-popularity stations in the Bay Area

Bikeshare network (Figure 6), so the entire model is shifted up and flattened. In the refit models, MSE

is similar to the MSE of the model fit in Washington, DC, but R2 is much lower. Again, this is because

there is  less variation to explain,  in both San Francisco and Minneapolis.  The coefficients and the

intercepts remain significant.

We can transfer the random forest model, preserving the structure and relationships between the

7 It should be noted that cross-validation MSE is computed slightly differently for the refit linear model compared to the
original Washington, DC model. In the Washington model, variable selection was performed inside the cross-validation,
so each fold could potentially have a different set of best variables; otherwise the result will be biased as the predictors
were chosen on the basis of the test data (Hastie, Tibshirani, and Friedman 2009, 245–247). For the refit linear models,
the subset selection was performed on the basis of an entirely different dataset (the Washington dataset), so subset
selection need not be performed in the cross-validation, as the test data is already separate from the training data used to
screen predictors.
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variables but allowing for variations in the magnitude of the predictions, by fitting a linear model of the

observed popularities against the popularities predicted by the transferred random forest model. This is

effectively a log-log model, with the log of popularity on both sides. In both cities, the coefficient on

the random forest prediction is less than one, indicating that there is less variation in the popularity.

These  models  again  don’t  predict  particularly  well.  It  would  be  more  interpretable  to  regress  the

observed popularities against predicted popularities, without the log transformations, but this creates

heteroskedasticity. There exist other solutions to this problem, such as weighted least squares, but they

are  beyond  the  scope  of  this  paper.  The  residuals  of  these  scaled  models  are  still  spatially

autocorrelated.

The log-scaled random forest  models  allow for  variation  in  the  magnitude  of  the effect  of

accessibility measure on bikeshare use, but they constrain the relative importance and the interactions

of each of the accessibility measures to be the same as in Washington, DC. We can also refit  the

random  forest  entirely,  allowing  the  relationships  between  the  variables  to  change.  We are  now

transferring only the (relatively successful) modeling technique, and allowing everything else to be

refit. When we do this, cross-validation MSE is down somewhat from the semilog-scaled models, but

not a huge amount. This is unsurprising; when we fit to the data, as opposed to fitting to other data

from a different city and transferring the model, MSE should go down. What is most interesting is that

residual  spatial  autocorrelation  is  down;  it  is  no  longer  significantly  different  from  0  (not

autocorrelated)  in  San  Francisco,  and  is  0.3,  right  on  the  edge  of  being  considered  strong,  in

Minneapolis. Fitting a random forest to local data yields the lowest residual spatial autocorrelation in

all cities.
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Figure 7: Residuals from the linear model fit in Washington, DC
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Figure 8: Residuals from the random forest model fit in Washington, DC
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Figure 9: Residuals from the refit linear model in Minneapolis
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Figure 10: Residuals from the refit linear model in San Francisco
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Figure 11: Residuals from the refit random forest model, Minneapolis—St. Paul
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Figure 12: Residuals from the refit random forest in San Francisco
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Discussion and Further Research

The results of this study are decidedly mixed. There is a significant link between accessibility

and bikeshare station popularity. However, while the models predict defensibly well in in the city in

which they are fit (even under cross-validation, suggesting that they should predict new stations with

similar efficacy), the models do not transfer very well at all. The models transfer fairly well when refit,

but if the models are to be used as planning tools to assess potential new bikesharing systems, they

need to transfer well without refitting parameters.

There is still spatial autocorrelation in the residuals of most models, indicating that the models

are not fully explaining systematic spatial effects. The random forest models have less autocorrelation

and use more of the variables. This is promising; adding additional accessibility measures explains

more of the systematic variation in the data.

Plotting the residuals on a map is a valuable way to assess the autocorrelation. In Washington,

DC, we see that the linear model underpredicts in the southeast part of the city, as well as the western

part of the core (Figure  7). Recall that the residuals of the random forest model show no significant

autocorrelation (Figure  8). The obvious explanation of the reduced autocorrelation is simply that the

random forest uses more predictors; if, as hypothesized, multiple accessibility measures do feed into

driving station popularity, the residual autocorrelation in the linear model could be because it is using

only one variable. The remaining autocorrelation can be explained using more variables. It would be

interesting to fit a linear regression with more variables and see how it performs in comparison to the

random forests. It is also possible that the unique combination of different accessibility measures in

these parts of the city allows the random forest to overfit, by having trees with leaves specific to a

given area.
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In Minneapolis—St. Paul, the refit linear model underpredicts in St. Paul and overpredicts in

Minneapolis (Figure  9). The refit random forest does better (Figure  11), although residuals are still

autocorrelated. It has been argued that lower-than-expected bikeshare use in St. Paul is due to a lack of

bicycle infrastructure  (Lindeke 2014). This could explain the residual spatial autocorrelation; bicycle

infrastructure is not a variable that was considered in this analysis, although it was considered and

found to be significant in Rixey 2013 (10–11). Also illustrating the volatility of the models are the two

stations on the western side of the city, which are highly underpredicted by the random forest model,

and highly overpredicted by the linear model.

In San Francisco, station popularities are less spatially autocorrelated to begin with (I=0.49 for

log(Popularity)). The refit linear model leaves autocorrelated residuals, while the refit random forest

leaves residuals that are not significantly autocorrelated. Examining the residuals of the linear model

(Figure 10), one can again hypothesize that autocorrelation is due to the exclusion of some variables

(especially since the random forest does not exhibit significant residual autocorrelation). Using more

variables  captures  more  of  the  structure  of  the  data,  although overfitting  is  still  a  possibility  (see

paragraph about DC, above).

The models are almost certainly misspecified. These models are based only on accessibility to

jobs, residents, and other bikeshare stations. The most straightforward theoretical reason for positive

correlations  between  accessibility  measures  and  station  popularities  is  that  bikeshare  users  are

accessing  the  amenities  represented  by  the  accessibility  measures.  With  that  assumption,  a

properly-specified model would contain accessibility measures to all of the things that bikeshare is

frequently used to access. A study of Capital Bikeshare users found that they did use bikeshare to go to

work, but also to access shopping, social events, restaurants, and so on (Capital Bikeshare 2013, 31).

It would thus make sense to add measures of accessibility to things such as shops. Many bikeshare trips
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are  used  to  access  transit  (Capital  Bikeshare  2013,  iv).  This  analysis  included  transit  stops  only

implicitly (through the use of transit-based accessibility measures). It  might make sense to include

measures of accessibility to transit stops. Others have used additional variables and found them to be

significantly correlated with bikeshare use. For instance, Rixey found that accessibility to alternative

commuters (bicycle/walk/transit) and educated individuals had positive effects on station popularity

(2013, 4, 10).

Adding these additional measures, however, will make models difficult to interpret and will

decrease the significance of the coefficients (by increasing their variances).8 The accessibility measures

calculated thus far are highly correlated, and there is no reason to believe that additional measures will

not be. Specialized statistical techniques could be used to deal with this issue. Random forests are one

of these techniques, however they are also a fairly flexible method; flexibility is undesired because the

models are intended for transfer. Fitting a model very close to the training data may hurt transferability.

Two  alternate  methods  for  highly-correlated  values  are  ridge  regression  and  principal

components  regression.  Ridge  regression  shrinks  the  coefficient  estimates  from their  least-squares

values, decreasing the flexibility because the model cannot fit as closely to the data (James et al. 2013,

215–17). This introduces bias but reduces variance, which is desirable when many correlated predictors

are used. Principal components regression is also an inflexible method, and should work well with

correlated predictors. It first constructs principal components along which the data vary significantly,

then uses those as predictors in the a regression model (James et al. 2013, 230–36). If data are strongly

correlated, low-numbered principal components should capture much of the variation in the data and

reduce the variance of the fits. The bootstrap could be used to estimate the variance of the coefficients

produced by principal components regression.

8 Adding additional correlated variables increases the variance of the coefficient estimates, which in turn decreases the
t-statistic and the significance of the variable (James et al. 2013, 101).
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In sum, modeling bikeshare use in one city worked fairly well, but transferring the models did

not.  A significant  connection between accessibility  and bikeshare use was found, however. Adding

additional accessibility measures should help with model specification issues, and ridge regression or

principal components regression could be used to constrain the flexibility of the models and address the

effects of high correlation of the predictors.

Appendix: Software Used

Accessibility measures were calculated using OpenTripPlanner (OpenTripPlanner Team 2014).

Data were processed and maps were made using QGIS (QGIS Team 2014). Data were loaded into the

R  Statistical  Programming  Environment  for  analysis  (R  Core  Team  2013).  The  R  package  plyr

(Wickham  2011) was  used  to  manipulate  data,  ggplot2  (Wickham  2009) and  scales  (Wickham

2012) were used for data graphics (specifically correlation matrices), leaps was used for best-subset

selection  (Lumley  2009),  spdep  was  used  for  calculating  spatial  statistics  (Bivand  2013),  and  the

randomForest library was used to fit random forests (Liaw and Wiener 2002). Code adapted from from

An  Introduction  to  Statistical  Learning was  used  to  perform cross-validation  in  conjunction  with

best-subset selection (James et al. 2013, 249).
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GTFS data courtesy:

• WMATA: WMATA Transit information provided on this site is subject to change without notice. For the most
current information, please visit http://www.wmata.com.

• Fairfax Connector: Visit fairfaxconnector.com for more information

http://www.fairfaxcounty.gov/connector
http://www.wmata.com/
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• Maryland Transit Administration

• Arlington Transit

• AC Transit

• Caltrain

• BART

• SamTrans

• San  Francisco  Muni:  Reproduced  with  permission  granted  by  the  City  and  County  of  San  Francisco.  The
information has been provided by means of a nonexclusive, limited, and revocable license granted by the City and
County of San Francisco.

The City and County of San Francisco does not guarantee the accuracy, adequacy, completeness or usefulness of
any information. The City and County of San Francisco provides this information "as is," without warranty of any
kind, express  or implied, including but not limited to warranties of  merchantability or  fitness for a particular
purpose, and assumes no responsibility for anyone's use of the information.

• Valley Transportation Authority

• Metro Transit

Street  network  data  ©  OpenStreetMap  contributors,  available  under  the  Open  Database  License.  See
http://www.openstreetmap.org and http://www.opendatacommons.org.

http://www.opendatacommons.org/
http://www.openstreetmap.org/
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