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What is bikeshare?

 Bicycles distributed
throughout a city

e Electronic stations,
automated rental

* Intended for short,
point-to-point trips

 Memberships grant
unlimited short trips
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Bikeshare data

* Every time a bike is checked in or out, that is
recorded

« Several bikeshare operators provide
anonymized trip-level data to the public

* This analysis
- Washington, DC (Capital Bikeshare)

- Minneapolis/St. Paul (Nice Ride MN)
- San Francisco Bay Area (Bay Area Bikeshare)
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Bike movements per day
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Modeling popularity

» Hypothesis: accessibility drives station popularity
* Independent variables

- accessibility to jobs and residents by walking and
transit

- accessibility to other stations by bike
* Dependent variable: log(Popularity)

* Modeling philosophy: fit model in Washington,
DC, and try to transfer to other cities
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Data sources

 Station popularity can be extracted from trip data in
Washington and Minneapolis, and from real-time
availability data in San Francisco

* Block-level population and jobs data is available in the
2010 Census

» Street network data is available from OpenStreetMap

* Transit schedule data is available from transit
providers

» Accessibility can be calculated using OpenTripPlanner
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Linear regression
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Linear regression

Coefficients Mean Squared R’ Moran’s [
Error
Model Intercept  Predictor T Cross- Test Training Test Response Residuals
validation #
*1
Linear model (DC) 1.64 0.06 0.63 ~ 0.68 - 0.79 0.50
Direct transfer (MN) 1.64 0.06 - 0.61 - 0.31 0.69 0.55
Direct transfer (SF) 1.64 0.06 - 0.87 — -0.15 0.49 0.53
Refit linear model (MN) 1.40 0.07 0.62 0.32 - 0.69 0.53
Refit linear model (SF) 2.65 0.03 0.54 - 0.33 - 0.49 0.23
not statistically significant (o = 0.05)
#* 5-fold

T These models and measures are stochastic; parameters and values may vary slightly if refit, even with the same data.

& Using test R* to evaluate the validity of transferred models is misleading, as it is based on the mean of the test
observations. Thus it “sees” the test data, which the model did not see when trained.

™ The predictor is jobs within 60 minutes by transit for the linear models and the exponentiated random forest prediction
for the semilog-scaled models.
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Random forests
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Random forests

Coefficients Mean Squared R Moran’s J
Error
Model Intercept| Predictor ™ Cross- Test | Training | Test | Response | Residuals
validation N
*

Random forest model (DC) - - 0.31 - 0.84 - 0.79 -0.02F
1
Direct transfer random = = -| 0.99 —|-0.12 0.69 0.03
forest (MN) §
Direct transfer random = = —-| 0.6l —-| 0.19 0.49 0.27
forest (SF) §
Double-log-scaled random 1.39 0.44 0.75 = 0.17 - 0.69 0.63
forest (MN) §
Double-log-scaled random 1.23 0.08 0.52 - 0.34 - 0.49 0.20
forest (SF)
Refit random forest (MN) - - 0.47 - 0.47 - 0.69 0.30
Refit random forest (SF) = - 0.50 = 0.31 s 0.49 0.06F

T not statistically significant (o = 0.05)

* 5-fold

i These models and measures are stochastic; parameters and values may vary slightly if refit, even with the same data.

& Using test

R’ to evaluate the validity of transferred models is misleading, as it is based on the mean of the test

observations. Thus it “sees™ the test data, which the model did not see when trained.
™ The predictor is jobs within 60 minutes by transit for the linear models and the random forest prediction in log units for

the double-log-scaled models.




Discussion

» Accessibility is significantly correlated with
bikeshare station use

* These accessibility-based models don't predict
as well as might have been hoped

* Model transfer is inconsistent, suggesting
city-specific Factors (cf. Rixey 2013)

13/17



Further research

 Add more
accessibility types
(see Capital Bikeshare
2013, 23)

* Try additional
statistical methods

- Ridge regression

- Principal components jobs60
regression

bike30
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